active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
PROPER(from(X)) → FROM(proper(X))
ACTIVE(from(X)) → FROM(s(X))
FILTER(mark(X1), X2) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(filter(X1, X2)) → PROPER(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
S(mark(X)) → S(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(primes) → S(s(0))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(primes) → S(0)
HEAD(ok(X)) → HEAD(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TAIL(ok(X)) → TAIL(X)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
ACTIVE(primes) → SIEVE(from(s(s(0))))
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(head(X)) → ACTIVE(X)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(sieve(X)) → SIEVE(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
SIEVE(mark(X)) → SIEVE(X)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
ACTIVE(from(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(from(X)) → PROPER(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
FROM(ok(X)) → FROM(X)
ACTIVE(primes) → FROM(s(s(0)))
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
PROPER(from(X)) → FROM(proper(X))
ACTIVE(from(X)) → FROM(s(X))
FILTER(mark(X1), X2) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(filter(X1, X2)) → PROPER(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
S(mark(X)) → S(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(primes) → S(s(0))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(primes) → S(0)
HEAD(ok(X)) → HEAD(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TAIL(ok(X)) → TAIL(X)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
ACTIVE(primes) → SIEVE(from(s(s(0))))
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(head(X)) → ACTIVE(X)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(sieve(X)) → SIEVE(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
SIEVE(mark(X)) → SIEVE(X)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
ACTIVE(from(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(from(X)) → PROPER(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
FROM(ok(X)) → FROM(X)
ACTIVE(primes) → FROM(s(s(0)))
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
ACTIVE(from(X)) → FROM(s(X))
PROPER(from(X)) → FROM(proper(X))
FILTER(mark(X1), X2) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(filter(X1, X2)) → PROPER(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(head(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X2)
S(mark(X)) → S(X)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(primes) → S(s(0))
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(primes) → S(0)
ACTIVE(tail(X)) → ACTIVE(X)
HEAD(ok(X)) → HEAD(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TOP(mark(X)) → PROPER(X)
TAIL(ok(X)) → TAIL(X)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
ACTIVE(primes) → SIEVE(from(s(s(0))))
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
PROPER(sieve(X)) → SIEVE(proper(X))
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
PROPER(s(X)) → S(proper(X))
PROPER(if(X1, X2, X3)) → PROPER(X3)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
PROPER(sieve(X)) → PROPER(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → HEAD(active(X))
S(ok(X)) → S(X)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
SIEVE(ok(X)) → SIEVE(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(head(X)) → HEAD(proper(X))
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
ACTIVE(sieve(X)) → ACTIVE(X)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(from(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
PROPER(from(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
ACTIVE(from(X)) → ACTIVE(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
FROM(ok(X)) → FROM(X)
ACTIVE(primes) → FROM(s(s(0)))
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
Used ordering: Combined order from the following AFS and order.
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
mark1 > DIVIDES1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
Used ordering: Combined order from the following AFS and order.
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
mark > DIVIDES1
ok1 > DIVIDES1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
mark1 > DIVIDES1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
Used ordering: Combined order from the following AFS and order.
FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(X1, mark(X2)) → FILTER(X1, X2)
Used ordering: Combined order from the following AFS and order.
FILTER(mark(X1), X2) → FILTER(X1, X2)
mark1 > FILTER1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FILTER(mark(X1), X2) → FILTER(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(mark(X1), X2) → FILTER(X1, X2)
mark1 > FILTER1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
mark > IF1
ok1 > IF1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
mark1 > IF2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TAIL(mark(X)) → TAIL(X)
TAIL(ok(X)) → TAIL(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TAIL(mark(X)) → TAIL(X)
Used ordering: Combined order from the following AFS and order.
TAIL(ok(X)) → TAIL(X)
mark1 > TAIL1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TAIL(ok(X)) → TAIL(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TAIL(ok(X)) → TAIL(X)
ok1 > TAIL1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
HEAD(ok(X)) → HEAD(X)
Used ordering: Combined order from the following AFS and order.
HEAD(mark(X)) → HEAD(X)
ok1 > HEAD1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
HEAD(mark(X)) → HEAD(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
HEAD(mark(X)) → HEAD(X)
mark1 > HEAD1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
Used ordering: Combined order from the following AFS and order.
CONS(mark(X1), X2) → CONS(X1, X2)
mark > CONS1
ok1 > CONS1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
CONS(mark(X1), X2) → CONS(X1, X2)
mark1 > CONS1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
S(mark(X)) → S(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
S(ok(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(mark(X)) → S(X)
ok1 > S1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(mark(X)) → S(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
S(mark(X)) → S(X)
mark1 > S1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FROM(mark(X)) → FROM(X)
Used ordering: Combined order from the following AFS and order.
FROM(ok(X)) → FROM(X)
mark1 > FROM1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FROM(ok(X)) → FROM(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FROM(ok(X)) → FROM(X)
ok1 > FROM1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
SIEVE(mark(X)) → SIEVE(X)
SIEVE(ok(X)) → SIEVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SIEVE(mark(X)) → SIEVE(X)
Used ordering: Combined order from the following AFS and order.
SIEVE(ok(X)) → SIEVE(X)
mark1 > SIEVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
SIEVE(ok(X)) → SIEVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SIEVE(ok(X)) → SIEVE(X)
ok1 > SIEVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(sieve(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(if(X1, X2, X3)) → PROPER(X2)
Used ordering: Combined order from the following AFS and order.
PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
cons2 > PROPER1
filter2 > PROPER1
if3 > PROPER1
divides2 > PROPER1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(s(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
s1 > PROPER1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(sieve(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(from(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(tail(X)) → PROPER(X)
from1 > PROPER1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(tail(X)) → PROPER(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(tail(X)) → PROPER(X)
tail1 > PROPER1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
Used ordering: Combined order from the following AFS and order.
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(sieve(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
sieve1 > ACTIVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(tail(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
tail1 > ACTIVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
Used ordering: Combined order from the following AFS and order.
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
cons2 > ACTIVE1
if3 > ACTIVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(from(X)) → ACTIVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(from(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(head(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(from(X)) → ACTIVE(X)
head1 > ACTIVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(from(X)) → ACTIVE(X)
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(from(X)) → ACTIVE(X)
from1 > ACTIVE1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))
active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))